From 0 to 1: Machine Learning, NLP & Python-Cut to the Chase

  • 595
  • 0
  • 0
  • 0
wolves-头像
From 0 to 1: Machine Learning, NLP & Python-Cut to the Chase
收藏
  • From 0 to 1: Machine Learning, NLP & Python-Cut to the Chase-缩略图
  • 举报
  • 点赞
  • 0
  • 分享

素材介绍

From 0 to 1: Machine Learning, NLP & Python-Cut to the Chase A down-to-earth, shy but confident take on machine learning techniques that you can put to work today Created by Loony Corn Last updated 3/2017 English What Will I Learn? Identify situations that call for the use of Machine Learning Understand which type of Machine learning problem you are solving and choose the appropriate solution Use Machine Learning and Natural Language processing to solve problems like text classification, text summarization in Python Requirements No prerequisites, knowledge of some undergraduate level mathematics would help but is not mandatory. Working knowledge of Python would be helpful if you want to run the source code that is provided. Description Prerequisites: No prerequisites, knowledge of some undergraduate level mathematics would help but is not mandatory. Working knowledge of Python would be helpful if you want to run the source code that is provided. Taught by a Stanford-educated, ex-Googler and an IIT, IIM – educated ex-Flipkart lead analyst. This team has decades of practical experience in quant trading, analytics and e-commerce. This course is a down-to-earth, shy but confident take on machine learning techniques that you can put to work today Let’s parse that. The course is down-to-earth : it makes everything as simple as possible – but not simpler The course is shy but confident : It is authoritative, drawn from decades of practical experience -but shies away from needlessly complicating stuff. You can put ML to work today : If Machine Learning is a car, this car will have you driving today. It won’t tell you what the carburetor is. The course is very visual : most of the techniques are explained with the help of animations to help you understand better. This course is practical as well : There are hundreds of lines of source code with comments that can be used directly to implement natural language processing and machine learning for text summarization, text classification in Python. The course is also quirky. The examples are irreverent. Lots of little touches: repetition, zooming out so we remember the big picture, active learning with plenty of quizzes. There’s also a peppy soundtrack, and art – all shown by studies to improve cognition and recall. What’s Covered: Machine Learning: Supervised/Unsupervised learning, Classification, Clustering, Association Detection, Anomaly Detection, Dimensionality Reduction, Regression. Naive Bayes, K-nearest neighbours, Support Vector Machines, Artificial Neural Networks, K-means, Hierarchical clustering, Principal Components Analysis, Linear regression, Logistics regression, Random variables, Bayes theorem, Bias-variance tradeoff Natural Language Processing with Python: Corpora, stopwords, sentence and word parsing, auto-summarization, sentiment analysis (as a special case of classification), TF-IDF, Document Distance, Text summarization, Text classification with Naive Bayes and K-Nearest Neighbours and Clustering with K-Means Sentiment Analysis: Why it’s useful, Approaches to solving – Rule-Based , ML-Based , Training , Feature Extraction, Sentiment Lexicons, Regular Expressions, Twitter API, Sentiment Analysis of Tweets with Python Mitigating Overfitting with Ensemble Learning: Decision trees and decision tree learning, Overfitting in decision trees, Techniques to mitigate overfitting (cross validation, regularization), Ensemble learning and Random forests Recommendations: Content based filtering, Collaborative filtering and Association Rules learning Get started with Deep learning: Apply Multi-layer perceptrons to the MNIST Digit recognition problem A Note on Python: The code-alongs in this class all use Python 2.7. Source code (with copious amounts of comments) is attached as a resource with all the code-alongs. The source code has been provided for both Python 2 and Python 3 wherever possible. Using discussion forums Please use the discussion forums on this course to engage with other students and to help each other out. Unfortunately, much as we would like to, it is not possible for us at Loonycorn to respond to individual questions from students:-( We’re super small and self-funded with only 2-3 people developing technical video content. Our mission is to make high-quality courses available at super low prices. The only way to keep our prices this low is to *NOT offer additional technical support over email or in-person*. The truth is, direct support is hugely expensive and just does not scale. We understand that this is not ideal and that a lot of students might benefit from this additional support. Hiring resources for additional support would make our offering much more expensive, thus defeating our original purpose. It is a hard trade-off. Thank you for your patience and understanding! Who is the target audience? Yep! Analytics professionals, modelers, big data professionals who haven’t had exposure to machine learning Yep! Engineers who want to understand or learn machine learning and apply it to problems they are solving Yep! Product managers who want to have intelligent conversations with data scientists and engineers about machine learning Yep! Tech executives and investors who are interested in big data, machine learning or natural language processing Yep! MBA graduates or business professionals who are looking to move to a heavily quantitative role Size: 10.14G Content retrieved from: https://www.udemy.com/from-0-1-machine-learning/.
wolves-头像
  • 166
  • 12780100
  • 77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    • 273
    • 0
    • 0
    • 0
  • 复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    • 288
    • 0
    • 0
    • 0
  • JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    • 237
    • 0
    • 0
    • 0

评论(0)

  • 热评
  • 所有评论
还没有评论哦~
还没有评论哦~

关键词

  • python
  • 近期更新
  • 热评推荐
  • 热门点击
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

2025-02-13 11:03:14

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

2025-02-13 11:01:09

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

2025-02-13 10:58:24

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

2025-02-13 10:56:32

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

2025-02-13 10:53:58

3DsMax建模插件集合:rapidTools v1.14+使用教程

3DsMax建模插件集合:rapidTools v1.14+使用教程

2020-07-06 17:44:38

Proko-人体解剖高级付费版(中文字幕)256课

Proko-人体解剖高级付费版(中文字幕)256课

2020-12-21 18:34:01

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

2020-07-13 10:43:06

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

3DDD 3DSky PRO models – April 2021

3DDD 3DSky PRO models – April 2021

2021-08-09 17:15:13

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

2021-01-26 16:03:27

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

2019-07-31 11:06:07

标签云

  • python

相关资源/猜你喜欢