Artificial Intelligence: Reinforcement Learning in Python
2024
Complete guide to Reinforcement Learning, with Stock Trading and Online Advertising Applications
上次更新 12/2020
英语 [自动], 德语 [自动]
13 个章节 • 108 个讲座 • 总时长 12 小时 52 分钟
你将会学到的
Apply gradient-
d supervised machine learning methods to reinforcement learning
Understand reinforcement learning on a technical level
Understand the relationship between reinforcement learning and psychology
Implement 17 differ
Share FacebookTwitterGoogle+ReddIt
Artificial Intelligence Reinforcement Learning in Python
Complete guide to artificial intelligence and machine learning, prep for deep reinforcement learning
What Will I Learn?
Apply gradient-
d supervised machine learning methods to reinforcement learning
Understand reinforcement learning on a technical level
Understand the relationship between reinforcement learning and psychology
Implement 17 different reinforcement learning algorithms
Requirements
Calculus
Probability
Markov Models
The Numpy Stack
Have experience with at least a few supervised machine learning methods
Gradient descent
Good object-oriented programming skills
Description
When people talk about artificial intelligence, they usually don’t mean supervised and unsupervised machine learning.
These tasks are pretty trivial compared to what we think of AIs doing – playing chess and Go, driving cars, and beating video games at a superhuman level.
Reinforcement learning has recently become popular for doing all of that and more.
Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn’t been until recently that we’ve been able to observe first hand the amazing results that are possible.
In 2016 we saw Google’s AlphaGo beat the world Champion in Go.
We saw AIs playing video games like Doom and Super Mario.
Self-driving cars have started driving on real roads with other drivers and even carrying passengers (Uber), all without human assistance.
If that sounds amazing, brace yourself for the future because the law of accelerating returns dictates that this progress is only going to continue to increase exponentially.
Learning about supervised and unsupervised machine learning is no small feat. To date I have over SIXTEEN (16!) courses just on those topics alone.
And yet reinforcement learning opens up a whole new world. As you’ll learn in this course, the reinforcement learning paradigm is more different from supervised and unsupervised learning than they are from each other.
It’s led to new and amazing insights both in behavioral psychology and neuroscience. As you’ll learn in this course, there are many analogous processes when it comes to teaching an agent and teaching an animal or even a human. It’s the closest thing we have so far to a true general artificial intelligence.
What’s covered in this course?
The multi-armed bandit problem and the explore-exploit dilemma
Ways to calculate means and moving averages and their relationship to stochastic gradient descent
Markov Decision Processes (MDPs)
Dynamic Programming
Monte Carlo
Temporal Difference (TD) Learning
Approximation Methods (i.e. how to plug in a deep neural network or other differentiable model into your RL algorithm)
If you’re ready to take on a brand new challenge, and learn about AI techniques that you’ve never seen before in traditional supervised machine learning, unsupervised machine learning, or even deep learning, then this course is for you.
See you in class!
NOTES:
All the code for this course can be downloaded from my github:
/lazyprogrammer/machine_learning_examples
In the directory: rl
Make sure you always “git pull” so you have the latest version!
HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:
Calculus
Probability
Object-oriented programming
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations
Linear regression
Gradient descent
TIPS (for getting through the course):
Watch it at 2x.
Take handwritten notes. This will drastically increase your ability to retain the information.
Write down the equations. If you don’t, I guarantee it will just look like gibberish.
Ask lots of questions on the discussion board. The more the better!
Realize that most exercises will take you days or weeks to complete.
Write code yourself, don’t just sit there and look at my code.
USEFUL COURSE ORDERING:
(The Numpy Stack in Python)
Linear Regression in Python
Logistic Regression in Python
(Supervised Machine Learning in Python)
(Bayesian Machine Learning in Python: A/B Testing)
Deep Learning in Python
Practical Deep Learning in Theano and TensorFlow
(Supervised Machine Learning in Python 2: Ensemble Methods)
Convolutional Neural Networks in Python
(Easy NLP)
(Cluster Analysis and Unsupervised Machine Learning)
Unsupervised Deep Learning
(Hidden Markov Models)
Recurrent Neural Networks in Python
Artificial Intelligence: Reinforcement Learning in Python
Natural Language Processing with Deep Learning in Python
Who is the target audience?
Anyone who wants to learn about artificial intelligence, data science, machine learning, and deep learning
Both students and professionals
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
2025-02-13 11:03:14
复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
2025-02-13 11:01:09
JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
2025-02-13 10:58:24
469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle
2025-02-13 10:56:32
诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS
2025-02-13 10:53:58
3DsMax建模插件集合:rapidTools v1.14+使用教程
2020-07-06 17:44:38
Proko-人体解剖高级付费版(中文字幕)256课
2020-12-21 18:34:01
VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计
2020-07-21 17:18:14
小武拉莫日系摄影后期第二期中文视频教程
2021-12-10 14:26:14
Mod Portfolio 3477506 画册模板 时尚杂志画册模版
2020-07-13 10:43:06
小武拉莫日系摄影后期第二期中文视频教程
2021-12-10 14:26:14
VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计
2020-07-21 17:18:14
3DDD 3DSky PRO models – April 2021
2021-08-09 17:15:13
MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员
2021-01-26 16:03:27
加特林机枪模型 加特林机关枪 Minigun Hi-Poly
2019-07-31 11:06:07
评论(0)