Bayesian Computational Analyses with R

  • 455
  • 0
  • 0
  • 0
wolves-头像
Bayesian Computational Analyses with R
收藏
  • Bayesian Computational Analyses with R-缩略图
  • 举报
  • 点赞
  • 0
  • 分享

素材介绍

Bayesian Computational Analyses with R

https://www.udemy.com/course/bayesian-computational-analyses-with-r/

Learn the concepts and practical side of using the Bayesian approach to estimate likely event outcomes.

上次更新 5/2016

英语 [自动]

你将会学到的

Understand Bayesian concepts, and gain a great deal of practical "hands-on" experience creating and estimating Bayesian models using R software.

Effectively use the Bayesian approach to estimate likely event outcomes, or probabilities, using their own data.

Be able to apply a range of Bayesian functions using R software in order to model and estimate single parameter, multi-parameter, conjugate mixture, multinomial, and rejection and importance sampling Bayesian models.

Understand and use both predictive priors and predictive posteriors in Bayesian applications.

Be able to compare and evaluate alternative, competing Bayesian models.

课程内容

8 个章节 • 82 个讲座 • 总时长 11 小时 37 分钟

要求

Students will need to install R and RStudio software, but ample instruction for doing so is provided in the course materials.

说明

Bayesian Computational Analyses with R is an introductory course on the use and implementation of Bayesian modeling using R software. The Bayesian approach is an alternative to the "frequentist" approach where one simply takes a sample of data and makes inferences about the likely parameters of the population. In contrast, the Bayesian approach uses both likelihood functions and a sample of observed data (the 'prior') to estimate the most likely values and distributions for the estimated population parameters (the 'posterior'). The course is useful to anyone who wishes to learn about Bayesian concepts and is suited to both novice and intermediate Bayesian students and Bayesian practitioners. It is both a practical, "hands-on" course with many examples using R scripts and software, and is conceptual, as the course explains the Bayesian concepts. All materials, software, R scripts, slides, exercises and solutions are included with the course materials. It is helpful to have some grounding in basic inferential statistics and probability theory. No experience with R is necessary, although it is also helpful.



The course begins with an introductory section (12 video lessons) on using R and R 'scripting.' The introductory section is intended to introduce RStudio and R commands so that even a novice R user will be comfortable using R. Section 2 introduces the Bayesian Rule, with examples of both discrete and beta priors, predictive priors, and beta posteriors in Bayesian estimation. Section 3 explains and demonstrates the use of Bayesian estimation for single parameter models, for example, when one wishes to estimate the most likely value of a mean OR of a standard deviation (but not both). Section 4 explains and demonstrates the use of "conjugate mixtures." These are single-parameter models where the functional form of the prior and post are similar (for example, both normally distributed). But 'mixtures' imply there may be more than one component for the prior or posterior density functions. Mixtures enable the simultaneous test of competing, alternative theories as to which is more likely. Section 5 deals with multi-parameter Bayesian models where one is estimating the likelihood of more than one posterior variable value, for example, both mean AND standard deviation. Section 6 extends the Bayesian discussion by examining the estimation of integrals to estimate a probability. Section 7 covers the application the Bayesian approach to rejection and importance sampling and Section 8 looks at examples of comparing and validating Bayesian models.



此课程面向哪些人:

The course is ideal for anyone interested in learning both the conceptual and practical side of using Bayes' Rule to model likely event outcomes.

The course is best suited for both students and professionals who currently make use of quantitative or probabilistic modeling.

It is useful to have a working knowledge of either basic inferential statistics or probability theory.

It is NOT necessary to have prior experience using R software to successfully complete and to benefit from this course.

wolves-头像
  • 166
  • 13394190
  • 77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    • 422
    • 0
    • 0
    • 0
  • 复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    • 428
    • 0
    • 0
    • 0
  • JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    • 395
    • 0
    • 0
    • 0

评论(0)

  • 热评
  • 所有评论
还没有评论哦~
还没有评论哦~

关键词

  • Bayesian
  • Computational
  • Analyses-with-R
  • 近期更新
  • 热评推荐
  • 热门点击
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

2025-02-13 11:03:14

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

2025-02-13 11:01:09

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

2025-02-13 10:58:24

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

2025-02-13 10:56:32

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

2025-02-13 10:53:58

3DsMax建模插件集合:rapidTools v1.14+使用教程

3DsMax建模插件集合:rapidTools v1.14+使用教程

2020-07-06 17:44:38

Proko-人体解剖高级付费版(中文字幕)256课

Proko-人体解剖高级付费版(中文字幕)256课

2020-12-21 18:34:01

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

2020-07-13 10:43:06

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

3DDD 3DSky PRO models – April 2021

3DDD 3DSky PRO models – April 2021

2021-08-09 17:15:13

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

2021-01-26 16:03:27

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

2019-07-31 11:06:07

标签云

  • Bayesian
  • Computational
  • Analyses-with-R

相关资源/猜你喜欢