Recommender Systems and Deep Learning in Python

  • 564
  • 0
  • 0
  • 0
wolves-头像
Recommender Systems and Deep Learning in Python
收藏
  • Recommender Systems and Deep Learning in Python-缩略图
  • Recommender Systems and Deep Learning in Python-缩略图
  • Recommender Systems and Deep Learning in Python-缩略图
  • 举报
  • 点赞
  • 0
  • 分享

素材介绍





Recommender Systems and Deep Learning in Python
Close



Recommender Systems and Deep Learning in Python
.MP4, AVC, 30 fps, 1280x720 | English, | 11h 20m | 4.03 GB

84 个讲座11:22:39



Created by Lazy Programmer Inc.The most in-depth course on recommendation systems with deep learning, machine learning, data science, and AI techniquesWhat you'll learnUnderstand and implement accurate recommendations for your users using simple and state-of-the-art algorithmsBig data matrix factorization on Spark with an AWS EC2 clusterMatrix factorization / SVD in pure NumpyMatrix factorization in KerasDeep neural networks, residual networks, and autoencoder in KerasRestricted Boltzmann Machine in TensorflowRequirementsFor earlier sections, just know some basic arithmeticFor advanced sections, know calculus, linear algebra, and probability for a deeper understandingBe proficient in Python and the Numpy stack (see my free course)For the deep learning section, know the basics of using Keras



Description



Believe it or not, almost all online businesses today make use of recommender systems in some way or another.What do I mean by “recommender systems”, and why are they useful?Let’s look at the top 3 websites on the Internet, according to Alexa: Google, YouTube, and Facebook.Recommender systems form the very foundation of these technologies.Google: Search resultsThey are why Google is the most successful technology company today.YouTube: Video dashboardI’m sure I’m not the only one who’s accidentally spent hours on YouTube when I had more important things to do! Just how do they convince you to do that?That’s right. Recommender systems!Facebook: So powerful that world governments are worried that the newsfeed has too much influence on people! (Or maybe they are worried about losing their own power… hmm…)Amazing!This course is a big bag of tricks that make recommender systems work across multiple platforms.We’ll look at popular news feed algorithms, like Reddit, Hacker News, and Google PageRank.We’ll look at Bayesian recommendation techniques that are being used by a large number of media companies today.But this course isn’t just about news feeds.Companies like Amazon, Netflix, and Spotify have been using recommendations to suggest products, movies, and music to customers for many years now.These algorithms have led to billions of dollars in added revenue.So I assure you, what you’re about to learn in this course is very real, very applicable, and will have a huge impact on your business.For those of you who like to dig deep into the theory to understand how things really work, you know this is my specialty and there will be no shortage of that in this course. We’ll be covering state of the art algorithms like matrix factorization and deep learning (making use of both supervised and unsupervised learning - Autoencoders and Restricted Boltzmann Machines), and you’ll learn a bag full of tricks to improve upon baseline results.As a bonus, we will also look how to perform matrix factorization using big data in Spark. We will create a cluster using Amazon EC2 instances with Amazon Web Services (AWS). Most other courses and tutorials look at the MovieLens 100k dataset - that is puny! Our examples make use of MovieLens 20 million.Whether you sell products in your e-commerce store, or you simply write a blog - you can use these techniques to show the right recommendations to your users at the right time.If you’re an employee at a company, you can use these techniques to impress your manager and get a raise!I’ll see you in class!NOTE:This course is not "officially" part of my deep learning series. It contains a strong deep learning component, but there are many concepts in the course that are totally unrelated to deep learning.HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:For earlier sections, just know some basic arithmeticFor advanced sections, know calculus, linear algebra, and probability for a deeper understandingBe proficient in Python and the Numpy stack (see my free course)For the deep learning section, know the basics of using KerasFor the RBM section, know TensorflowTIPS (for getting through the course):Watch it at 2x.Take handwritten notes. This will drastically increase your ability to retain the information.Write down the equations. If you don't, I guarantee it will just look like gibberish.Ask lots of questions on the discussion board. The more the better!The best exercises will take you days or weeks to complete.Write code yourself, don't just sit there and look at my code. This is not a philosophy course!Who this course is for:Anyone who owns or operates an Internet businessStudents in machine learning, deep learning, artificial intelligence, and data scienceProfessionals in machine learning, deep learning, artificial intelligence, and data science



More Info



×



Recommender Systems and Deep Learning in Python



Close



×



Recommender Systems and Deep Learning in Python



Close×



Recommender Systems and Deep Learning in Python



Close



Recommender Systems and Deep Learning in Python.MP4, AVC, 30 fps, 1280x720 | English, AAC, 64 kbps, 2 Ch | 11h 20m | 4.03 GBCreated by Lazy Programmer Inc.The most in-depth course on recommendation systems with deep learning, machine learning, data science, and AI techniquesWhat you'll learnUnderstand and implement accurate recommendations for your users using simple and state-of-the-art algorithmsBig data matrix factorization on Spark with an AWS EC2 clusterMatrix factorization / SVD in pure NumpyMatrix factorization in KerasDeep neural networks, residual networks, and autoencoder in KerasRestricted Boltzmann Machine in TensorflowRequirementsFor earlier sections, just know some basic arithmeticFor advanced sections, know calculus, linear algebra, and probability for a deeper understandingBe proficient in Python and the Numpy stack (see my free course)For the deep learning section, know the basics of using Keras



Description



Believe it or not, almost all online businesses today make use of recommender systems in some way or another.What do I mean by “recommender systems”, and why are they useful?Let’s look at the top 3 websites on the Internet, according to Alexa: Google, YouTube, and Facebook.Recommender systems form the very foundation of these technologies.Google: Search resultsThey are why Google is the most successful technology company today.YouTube: Video dashboardI’m sure I’m not the only one who’s accidentally spent hours on YouTube when I had more important things to do! Just how do they convince you to do that?That’s right. Recommender systems!Facebook: So powerful that world governments are worried that the newsfeed has too much influence on people! (Or maybe they are worried about losing their own power… hmm…)Amazing!This course is a big bag of tricks that make recommender systems work across multiple platforms.We’ll look at popular news feed algorithms, like Reddit, Hacker News, and Google PageRank.We’ll look at Bayesian recommendation techniques that are being used by a large number of media companies today.But this course isn’t just about news feeds.Companies like Amazon, Netflix, and Spotify have been using recommendations to suggest products, movies, and music to customers for many years now.These algorithms have led to billions of dollars in added revenue.So I assure you, what you’re about to learn in this course is very real, very applicable, and will have a huge impact on your business.For those of you who like to dig deep into the theory to understand how things really work, you know this is my specialty and there will be no shortage of that in this course. We’ll be covering state of the art algorithms like matrix factorization and deep learning (making use of both supervised and unsupervised learning - Autoencoders and Restricted Boltzmann Machines), and you’ll learn a bag full of tricks to improve upon baseline results.As a bonus, we will also look how to perform matrix factorization using big data in Spark. We will create a cluster using Amazon EC2 instances with Amazon Web Services (AWS). Most other courses and tutorials look at the MovieLens 100k dataset - that is puny! Our examples make use of MovieLens 20 million.Whether you sell products in your e-commerce store, or you simply write a blog - you can use these techniques to show the right recommendations to your users at the right time.If you’re an employee at a company, you can use these techniques to impress your manager and get a raise!I’ll see you in class!NOTE:This course is not "officially" part of my deep learning series. It contains a strong deep learning component, but there are many concepts in the course that are totally unrelated to deep learning.HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:For earlier sections, just know some basic arithmeticFor advanced sections, know calculus, linear algebra, and probability for a deeper understandingBe proficient in Python and the Numpy stack (see my free course)For the deep learning section, know the basics of using KerasFor the RBM section, know TensorflowTIPS (for getting through the course):Watch it at 2x.Take handwritten notes. This will drastically increase your ability to retain the information.Write down the equations. If you don't, I guarantee it will just look like gibberish.Ask lots of questions on the discussion board. The more the better!The best exercises will take you days or weeks to complete.Write code yourself, don't just sit there and look at my code. This is not a philosophy course!Who this course is for:Anyone who owns or operates an Internet businessStudents in machine learning, deep learning, artificial intelligence, and data scienceProfessionals in machine learning, deep learning, artificial intelligence, and data science



More Info



×



Recommender Systems and Deep Learning in Python



Close



×



Recommender Systems and Deep Learning in Python



Close



wolves-头像
  • 166
  • 12809428
  • 77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    • 279
    • 0
    • 0
    • 0
  • 复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    • 295
    • 0
    • 0
    • 0
  • JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    • 240
    • 0
    • 0
    • 0

评论(0)

  • 热评
  • 所有评论
还没有评论哦~
还没有评论哦~

关键词

  • Recommender-Systems
  • Deep-Learning
  • Python课程
  • 大数据人工智能课程
  • 近期更新
  • 热评推荐
  • 热门点击
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

2025-02-13 11:03:14

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

2025-02-13 11:01:09

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

2025-02-13 10:58:24

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

2025-02-13 10:56:32

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

2025-02-13 10:53:58

3DsMax建模插件集合:rapidTools v1.14+使用教程

3DsMax建模插件集合:rapidTools v1.14+使用教程

2020-07-06 17:44:38

Proko-人体解剖高级付费版(中文字幕)256课

Proko-人体解剖高级付费版(中文字幕)256课

2020-12-21 18:34:01

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

2020-07-13 10:43:06

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

3DDD 3DSky PRO models – April 2021

3DDD 3DSky PRO models – April 2021

2021-08-09 17:15:13

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

2021-01-26 16:03:27

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

2019-07-31 11:06:07

标签云

  • Recommender-Systems
  • Deep-Learning
  • Python课程
  • 大数据人工智能课程

相关资源/猜你喜欢