Udemy – Complete linear algebra: theory and implementation
BESTSELLER | Created by Mike X Cohen | Video: 1280x720 | Audio: AAC 48KHz 2ch | Duration: 24:46 H/M | Lec: 174 | 7.28 GB | Language: English | Sub: English
Learn concepts in linear algebra and matrix analysis, and implement them in MATLAB and Python.
What you'll learn
Understand theoretical concepts in linear algebra, including proofs
Implement linear algebra concepts in scientific programming languages (MATLAB, Python)
Apply linear algebra concepts to real datasets
Ace your linear algebra exam!
Apply linear algebra on computers with confidence
Gain additional insights into solving problems in linear algebra, including homeworks and applications
Be confident in learning advanced linear algebra topics
Understand some of the important maths underlying machine learning
* Manually corrected closed-captions *
Requirements
Basic understanding of high-school algebra (e.g., solve for x in 2x=5)
Interest in learning about matrices and vectors!
(optional) Computer with MATLAB, Octave, or Python (or Jupyter)
Description
You need to learn linear algebra!
Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, and so on.
You need to know applied linear algebra, not just abstract linear algebra!
The way linear algebra is presented in 30-year-old textbooks is different from how professionals use linear algebra in computers to solve real-world applications. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you, and it's in this course!
If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers, then this course is for you!
Unique aspects of this course
Clear and comprehensible explanations of concepts and theories in linear algebra.
Several distinct explanations of the same ideas, which is a proven technique for learning.
Visualization using graphs, numbers, and spaces that strengthens the geometric intuition of linear algebra.
Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software!
Beginning to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition.
Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis.
Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition.
Benefits of learning linear algebra
Understand statistics including least-squares, regression, and multivariate analyses.
Improve simulations in engineering, computational biology, finance, and physics.
Understand data compression and dimension-reduction (PCA, SVD, eigendecomposition).
Understand the math underlying machine learning and linear classification algorithms.
Explore the link between linear algebra, matrices, and geometry.
Why I am qualified to teach this course:
I have been using linear algebra extensively in my research and teaching (primarily in MATLAB) for many years. I have written several textbooks about data analysis, programming, and statistics, that rely extensively on concepts in linear algebra.
Who this course is for?
Anyone interested in learning about matrices and vectors
Students who want supplemental instruction/practice for a linear algebra course
Engineers who want to refresh their knowledge of matrices and decompositions
Biologists who want to learn more about the math behind computational biology
Data scientists (linear algebra is everywhere in data science!)
Statisticians
Someone who wants to know the important math underlying machine learning
Someone who studied theoretical linear algebra and who wants to implement concepts in computers
Computational scientists (statistics, biological, engineering, neuroscience, psychology, physics, etc.)
Someone who wants to learn about eigendecomposition, diagonalization, and singular value decomposition!
Homepage
https://www.udemy.com/linear-algebra-theory-and-implementation/
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
2025-02-13 11:03:14
复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
2025-02-13 11:01:09
JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
2025-02-13 10:58:24
469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle
2025-02-13 10:56:32
诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS
2025-02-13 10:53:58
3DsMax建模插件集合:rapidTools v1.14+使用教程
2020-07-06 17:44:38
Proko-人体解剖高级付费版(中文字幕)256课
2020-12-21 18:34:01
VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计
2020-07-21 17:18:14
小武拉莫日系摄影后期第二期中文视频教程
2021-12-10 14:26:14
Mod Portfolio 3477506 画册模板 时尚杂志画册模版
2020-07-13 10:43:06
小武拉莫日系摄影后期第二期中文视频教程
2021-12-10 14:26:14
VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计
2020-07-21 17:18:14
3DDD 3DSky PRO models – April 2021
2021-08-09 17:15:13
MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员
2021-01-26 16:03:27
加特林机枪模型 加特林机关枪 Minigun Hi-Poly
2019-07-31 11:06:07
评论(0)