Bayesian Machine Learning in Python A B Testing

  • 556
  • 0
  • 0
  • 0
wolves-头像
Bayesian Machine Learning in Python A B Testing
收藏
  • Bayesian Machine Learning in Python A B Testing-缩略图
  • 举报
  • 点赞
  • 0
  • 分享

素材介绍

Bayesian Machine Learning in Python: A/B Testing







.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 48000 Hz, 2ch | 853 MB







Duration: 5.5 hours | Genre: eLearning Video | Language: English







Data Science, Machine Learning, and Data Analytics Techniques for Marketing, Digital Media, Online Advertising, and More.







https://www.udemy.com/bayesian-machine-learning-in-python-ab-testing/







What Will I Learn? Use adaptive algorithms to improve A/B testing performance Understand the difference between Bayesian and frequentist statistics Apply Bayesian methods to A/B testing Requirements Probability (joint, marginal, conditional distributions, continuous and discrete random variables, PDF, PMF, CDF) Python coding with the Numpy stack Description This course is all about A/B testing. A/B testing is used everywhere. Marketing, retail, newsfeeds, online advertising, and more. A/B testing is all about comparing things. If you’re a data scientist, and you want to tell the rest of the company, “logo A is better than logo B”, well you can’t just say that without proving it using numbers and statistics. Traditional A/B testing has been around for a long time, and it’s full of approximations and confusing definitions. In this course, while we will do traditional A/B testing in order to appreciate its complexity, what we will eventually get to is the Bayesian machine learning way of doing things. First, we’ll see if we can improve on traditional A/B testing with adaptive methods. These all help you solve the explore-exploit dilemma. You’ll learn about the epsilon-greedy algorithm, which you may have heard about in the context of reinforcement learning. We’ll improve upon the epsilon-greedy algorithm with a similar algorithm called UCB1. Finally, we’ll improve on both of those by using a fully Bayesian approach. Why is the Bayesian method interesting to us in machine learning? It’s an entirely different way of thinking about probability. It’s a paradigm shift. You’ll probably need to come back to this course several times before it fully sinks in. It’s also powerful, and many machine learning experts often make statements about how they “subscribe to the Bayesian school of thought”. In sum – it’s going to give us a lot of powerful new tools that we can use in machine learning. The things you’ll learn in this course are not only applicable to A/B testing, but rather, we’re using A/B testing as a concrete example of how Bayesian techniques can be applied. You’ll learn these fundamental tools of the Bayesian method – through the example of A/B testing – and then you’ll be able to carry those Bayesian techniques to more advanced machine learning models in the future. See you in class! All the code for this course can be downloaded from my github: /lazyprogrammer/machine_learning_examples In the directory: ab_testing Make sure you always “git pull” so you have the latest version! HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE: calculus probability (continuous and discrete distributions, joint, marginal, conditional, PDF, PMF, CDF, Bayes rule) Python coding: if/else, loops, lists, dicts, sets Numpy, Scipy, Matplotlib TIPS (for getting through the course): Watch it at 2x. Take handwritten notes. This will drastically increase your ability to retain the information. Write down the equations. If you don’t, I guarantee it will just look like gibberish. Ask lots of questions on the discussion board. The more the better! Realize that most exercises will take you days or weeks to complete. Write code yourself, don’t just sit there and look at my code. USEFUL COURSE ORDERING: (The Numpy Stack in Python) Linear Regression in Python Logistic Regression in Python (Supervised Machine Learning in Python) (Bayesian Machine Learning in Python: A/B Testing) Deep Learning in Python Practical Deep Learning in Theano and TensorFlow (Supervised Machine Learning in Python 2: Ensemble Methods) Convolutional Neural Networks in Python (Easy NLP) (Cluster Analysis and Unsupervised Machine Learning) Unsupervised Deep Learning (Hidden Markov Models) Recurrent Neural Networks in Python Artificial Intelligence: Reinforcement Learning in Python Natural Language Processing with Deep Learning in Python Advanced AI: Deep Reinforcement Learning in Python Who is the target audience? Students and professionals with a technical background who want to learn Bayesian machine learning techniques to apply to their data science work

wolves-头像
  • 166
  • 12785521
  • 77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs
    • 273
    • 0
    • 0
    • 0
  • 复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3
    • 288
    • 0
    • 0
    • 0
  • JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5
    • 237
    • 0
    • 0
    • 0

评论(0)

  • 热评
  • 所有评论
还没有评论哦~
还没有评论哦~

关键词

  • python
  • Bayesian-Machine
  • Learning-in-Python
  • AB-Testing
  • 近期更新
  • 热评推荐
  • 热门点击
77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

77组电影外观Log/Rec709视频还原色彩分级调色Lut预设包Pixflow – Colorify Cinematic LUTs

2025-02-13 11:03:14

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

复古怀旧电影风格温暖色调索尼Sony S-Log3视频调色LUT预设ROMAN HENSE – LUTs 24 for Sony S-Log3

2025-02-13 11:01:09

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

JUAN MELARA – P6K2Alexa PowerGrade AND LUTs V2 GEN 5

2025-02-13 10:58:24

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

469组终极照片调色LR预设视频LUT调色预设合集包 TheLutBay – The Ultimate Bundle

2025-02-13 10:56:32

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

诺兰《奥本海默》紧迫感幽闭恐惧症高级复古电影胶片风深黑色调后期色彩分级LUT预设 Tropic Colour – OPPENHEIMER LOOKS

2025-02-13 10:53:58

3DsMax建模插件集合:rapidTools v1.14+使用教程

3DsMax建模插件集合:rapidTools v1.14+使用教程

2020-07-06 17:44:38

Proko-人体解剖高级付费版(中文字幕)256课

Proko-人体解剖高级付费版(中文字幕)256课

2020-12-21 18:34:01

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

Mod Portfolio 3477506 画册模板 时尚杂志画册模版

2020-07-13 10:43:06

小武拉莫日系摄影后期第二期中文视频教程

小武拉莫日系摄影后期第二期中文视频教程

2021-12-10 14:26:14

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

VitaliStore - All Design Bundle Papercraft Sculptures Design 动物纸模模型 纸模型雕塑设计

2020-07-21 17:18:14

3DDD 3DSky PRO models – April 2021

3DDD 3DSky PRO models – April 2021

2021-08-09 17:15:13

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

MasterClass 大师班课程84套合集+中文字幕+持续更新+赠品会员

2021-01-26 16:03:27

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

加特林机枪模型 加特林机关枪 Minigun Hi-Poly

2019-07-31 11:06:07

标签云

  • python
  • Bayesian-Machine
  • Learning-in-Python
  • AB-Testing

相关资源/猜你喜欢